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Abstract
Response tokens (also known as backchannels, continuers, or
feedback) are a frequent feature of human interaction, where
they serve to display understanding and streamline turn-taking.
We propose a bottom-up method to study responsive behaviour
across 16 languages (8 language families). We use sequential
context and recurrence of turns formats to identify candidate re-
sponse tokens in a language-agnostic way across diverse con-
versational corpora. We then use UMAP clustering directly
on speech signals to represent structure and variation. We find
that (i) written orthographic annotations underrepresent the at-
tested variation, (ii) distinctions between formats can be gra-
dient rather than discrete, (iii) most languages appear to make
available a broad distinction between a minimal nasal format
‘mm’ and a fuller ‘yeah’-like format. Charting this aspect of
human interaction contributes to our understanding of interac-
tional infrastructure across languages and can inform the design
of speech technologies.
Index Terms: backchannels, feedback, linguistic typology

1. Introduction
Response tokens like ‘mm’ and ‘yeah’ are among the most fre-
quent and yet easily overlooked aspects of conversation. Of-
ten described as ‘backchannels’, they occupy a central role in
scaffolding interaction, streamlining turn-taking and calibrating
understanding [1, 2]. The sheer frequency and functional im-
portance of these items means we can think of them as inter-
actional tools: linguistic devices that accomplish social actions.
Progress towards interactive language technologies hinges on
understanding and modelling such interactional tools [3, 4].
While some of them have long been studied in a small num-
ber of well-resourced languages [5, 6], their structure and varia-
tion across diverse languages is mostly uncharted territory. Here
we combine insights from comparative linguistics, conversation
analysis and computational approaches to shed new light on a
key aspect of human interactional infrastructure.

Tackling structure and variation in response tokens across

Figure 1: Instances of response tokens in their natural environ-
ment in 3 unrelated languages: Arabic, Catalan and Japanese.
We use the structural fact that such tokens tend to occur in se-
ries as a way to identify them across languages.

languages requires addressing three interlinked challenges. The
first is a dearth of data: corpora of casual speech, crucial to en-
sure solid foundations for diversity-aware language technology,
are still quite rare. We address this by using conversational cor-
pora from diverse sources, including language documentation
archives that are increasingly available but rarely used. The sec-
ond is how to achieve comparability in uncharted territory. We
address this by using the sequential structure of conversation to
ensure we compare like with like across unrelated languages.
The third is an overreliance on orthographic representations,
which risks underestimating degrees of variation and flexibil-
ity in the use of response tokens. We address this by staying as
closely as possible to the speech signal in its sequential context,
rather than taking written forms for granted.

2. Related work
Befitting their place at the intersection of language science
and language technology, response tokens have been studied
in disparate fields, from linguistics and conversation analysis
to human-computer interaction and signal processing. Much
work has focused on when and where response tokens occur, in-
cluding efforts to identify “feedback relevance places” [7] and
models to predict when participants produce response tokens
in talk [8, 9, 10]. Other lines of work have used response to-
kens as a cue to predict the dynamics of talk and turn-taking
[11] or to make inferences about mental and cognitive states
[12]. A growing amount of work seeks to model feedback be-
haviour in human-agent interaction, including by means of re-
sponse token generation [13, 14] and attentive listening systems
[15, 16]. Despite considerable progress, the place of response
tokens in speech technology is by no means settled: they tend to
be missed by speech recognizers [17, 18, 19] and dialog man-
agers have a hard time dealing with them [20], showing that
they remain a key issue on which progress towards future gener-
ations of voice-interactive technologies and conversational user
interfaces depends.

Observational work on forms and functions of response to-
kens in human interaction is an important empirical foundation
of any speech technology intended for human use. Prior work
includes in-depth studies of the response token system in En-
glish, Japanese and a handful of other languages [8, 5, 21] as
well as comparative work on prosodic and multimodal aspects
[22, 23, 24]. Besides a small number of single-language de-
scriptive studies [25, 26, 27], the bulk of empirical, experimen-
tal and computational work has focused on a handful of well-
resourced Indo-European and East Asian languages. We cannot
assume that findings based on this small sample of languages
apply across the board. Getting a handle on the true extent of
diversity will be a critical stepping stone towards speech tech-
nologies that can cater to human needs around the globe.
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A: Languages, corpus size, and sequentially identified response tokens

Language (Glottocode) Size (hrs) Response tokens
Dutch (dutc1256) 387.6 ja, nee, mmm
French (stan1290) 31.4 ouais, hm
English (nort3314) 28 yeah, mhm, uhhuh
Spanish (stan1288) 27.6 sı́, mmm, vale
Korean (kore1280) 26.6 eung, eo, ye
Farsi (west2369) 25.3 AhAn, mhm, KHob
Arabic (egyp1253) 20.3 ah, M, mhm
Mandarin (mand1415) 18.6 e, en, ai
German (stan1295) 18.6 ja, mhm, aha
Polish (poli1260) 15.8 mhm, tak, aha
Japanese (nucl1643) 13.4 un, e, un un
Siwu (siwu1238) 9.9 mm, ẼẼ
Catalan (stan1289) 6.7 sı́, mmm, vale
Sambas (kend1254) 6.1 eeq, aoq, oh
Pite Saami (pite1240) 1 ja, mmm, nå
Juba Creole (suda1237) 0.5 m:::, aj

B: Location of largest speech community

C: Dutch response tokens ‘ja’, ‘mmm’, ‘nee’ in UMAP space

(a) total n = 20140 (b) n=1000 (c) n=150

Figure 2: A: Overview of included languages with dataset size in hours and top 3 sequentially identified response tokens as transcribed
in the corpus. B: Location of largest speech community. C: Assessing the impact of sparse data on UMAP projections using three
samples of Dutch response tokens. A look at the full dataset (a) and random-sampled subsets of decreasing size (b, c) suggests
isomorphism across scales and interpretability of clustering solutions as small as 150 tokens.

3. Data and methods
For the quantitative and inductive analysis that we envision, we
need relatively large and maximally diverse language resources
with time-aligned transcriptions. Rather than working with non-
interactive data sources or collecting new data, here we explore
the potential of language resources collected by the global lan-
guage documentation movement [28, 4].

We curate corpora of unscripted conversation made avail-
able in language documentation archives. Corpora are assessed
for factors that directly impact the feasibility of signal process-
ing at scale: corpus size, transcription density, timestamp accu-
racy, and noise levels. For details on the data curation process
see [29] and the repository at osf.io/7t9pn. The current dataset
consists of corpora for 16 languages (8 phyla) (Fig. 2).

3.1. Sequential search method

Working with diverse corpora raises the issue of how to iden-
tify tokens of interest. Some transcriptions are more ortho-
graphic and regularized, others are more oriented towards pho-
netics, and few are devised with the study of response tokens
in mind. For instance, annotations such as English ‘yeah’ often
conflate variations that may or may not have interactional im-
port [30, 31, 32]. Instead of taking any one representation for-
mat at face value, we use a language-agnostic sequential search
method that allows us to inductively identify candidate tokens.

A key aspect of this method is that we do not search corpora
for forms that sound like (or are translated as) ‘yeah’ or ‘hmm’.
Instead we define structural facts about how turns follow one
another to pinpoint responsive behaviours in language-agnostic
and form-agnostic ways (Fig. 1). In particular, we look for
items that: (i) feature in the top decile of frequency counts by
turn format per corpus; and (ii) occur at least once in a series of
at least two produced by the same speaker. These search crite-
ria reflect two basic observations about response tokens: their

high frequency in naturally occurring talk [4], and the fact that
they often occur in series of consecutive response tokens [33].
In short, we use patterns in how turn formats recur and follow
one another to identify items of interest. Given this abstract
structural characterization, we can achieve comparability across
corpora [34].

3.2. Exploratory clustering

We conduct a bottom-up, exploratory analysis of structure and
variation using UMAP dimensionality reduction [35], a method
that is conceptually similar to PCA, MDS, and t-SNE. Like
prior clustering methods, it builds a topological representation
of the data in higher dimensional space and then reduces it to
a two dimensional projection while preserving as much of the
graph structure as possible. We use UMAP because it better
represents similarity structure across datasets [36].

We start by using the sequential search method to iden-
tify the subset of human annotations that fit the profile of re-
sponse tokens. We then use the annotation timestamps to gen-
erate spectrograms from the source audio. After normalizing
and log-rescaling the spectrograms we apply UMAP clustering
(for details, see osf.io/7t9pn).

Since some datasets are relatively small, a first question is
to what extent lower numbers of response tokens impact the
interpretability of clustering results. We use random-sampled
successively smaller subsets of our largest corpus, Dutch, to as-
sess the interpretability of clustering solutions for 20000, 1000
and 150 tokens (Figure 2C).

Since even 150 tokens makes for interpretable projections,
and since our goal is to maximize the diversity of our sample,
we select languages that have on the order of 102 tokens. There
are 16 languages where the sequential search method yields suf-
ficient numbers of tokens (minimum 86, maximum 20140). To
facilitate quality control and visual exploration, we plot spec-
trograms alongside the clustering projections.
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Figure 3: Exploratory clustering projections of top 3 response tokens in 16 languages. Center: tokens in UMAP space ordered by
decreasing corpus frequency. Frame: Sample spectrograms from key areas of the projection to allow visual inspection. Total number
of tokens (estimated number of speakers): Arabic n=1434 (8), Catalan n=768 (24), Dutch = 20140 (1266), English n=1210 (32),
Farsi n=324 (6), French n=164 (8), German n=797 (14), Juba Creole n=87 (4), Korean n=865 (9), Mandarin Chinese n=1092 (8),
Pite Saami n=86 (7), Polish n=430 (42), Siwu n=234 (18), Spanish n=870 (24). Japanese and Sambas, greyed out, demonstrate two
challenges of human-annotated speech data: timestamp inaccuracy and high noise levels (both visible in the spectrograms).

4. Results
Applying dimensionality reduction techniques to response to-
kens in unfolding conversations allows a closer look at struc-
ture and variation at the signal level. Here we draw attention to
findings in four areas.

Formats. Despite the variety of response token formats
(Fig. 2A), one basic distinction that appears to be available in all
languages is that between a minimal monosyllabic nasal format
and one or more fuller forms that feature vowels and consonants

other than nasals. The distinction shows up in most of the clus-
tering projections, with the most distinct formats pulled apart
across the space in each language.

Gradience. At the same time, some formats appear to bear
more gradient relations to one another. For instance, in lan-
guages with multiple nasal or nasalized formats, distributions
often overlap at least partly (see Arabic, English, Farsi, Ger-
man, Siwu). Given good enough audio quality, it is conceivable
that clustering gives us a handle on the gradience in form —cor-
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responding for instance to different degrees of mouth opening—
that speakers can exploit interactionally.

Beyond orthography. Transcribers of conversational speech
face the impossible choice between capturing types (and func-
tions) versus tokens (and forms). This trade-off becomes most
apparent when transcribing minimal utterances like response
tokens. For instance, the distribution of German ‘aha’ tokens
largely overlaps with that of ‘mhm’ in the clustering projection,
a fact that becomes more intelligible once we realise that the
phonetic realization of the former is closer to [5̃h5̃]. An ad-
ditional layer of complexity is posed by orthographic idiosyn-
crasies and different writing systems. For instance, flamboyant-
looking French ‘ouais’ is phonetically [wE] (not so far from
[mm], as suggested by the clustering projection); and both
Mandarin 嗯, romanized as ‘en’ and Korean 응, romanized as
‘eung’, often are phonetic [m]. Clustering projections make vis-
ible these similarities in ways that orthographies do not. (Below
we note why a retreat to full-on IPA would not solve this.)

Quality control. Our results also make visible some of
the challenges of working with diverse corpora, including field
recordings. For instance, we include the plots of Japanese and
Sambas to show that this visualization enables a quick diagnosis
of problems. For Japanese, spectrograms reveal truncated seg-
ments, meaning that original timestamps do not correspond to
utterance boundaries and clustering solution should not be taken
at face value. For Sambas, we’re essentially classifying types of
noise, as can be seen from the spectrograms (a small set of sim-
ilarly noisy tokens is usefully pulled apart from the main distri-
bution in Siwu). Visualizing spectrograms along with clusters
enables the rapid visual identification of possible problems and
can therefore double as a quality control method.

4.1. Limitations

The methods pioneered here are preliminary and come with a
number of limitations.

Noise. Field recordings are anything but pristine studio
recordings. The levels of background sound present in these
datasets impact clustering (see e.g. Pite Saami, Siwu spectro-
grams). Additional noise reduction steps or filtering based on
noise levels may improve results here.

Timing. Another issue is inaccurate timestamps which can
cause unreliable clustering results. Large-scale timing issues
can be spotted easily (as in Japanese). Forced alignment may
be a helpful to check and improve timing accuracy at scale [37].

Overlap. Against our better judgement, we removed re-
sponse tokens that occur in overlap because this would ad-
versely impact clustering results. Since response tokens often
occur in overlap, this means we exclude 25 to 45% of response
tokens per corpus. Advances in speech separation [38] may pro-
vide a solution, though most of these methods remain untested
with everyday conversational data.

Untranscribed tokens. Spot checks revealed that occassion-
ally, minimal response tokens are not transcribed at all, either
because they are ’drowned’ in overlap or so minimal that they
stayed under the radar of the transcribers. We see a role here for
specialist ASR methods like spoken term detection [39].

5. Discussion
Our aim in this paper has been to enrich the data-driven study
of response tokens within and across languages by contributing
methodological and conceptual tools.

Methodologically, we propose that sequential rather than

token-based search methods are crucial to ensure comparability.
Given structurally comparable sets of tokens, the next method-
ological challenge is to find new ways to characterize their
structure and variation. For this, we find that new dimension-
ality reduction techniques can help to visualize rich conversa-
tional data for quality control and for analytical purposes.

Conceptually, a key challenge is how to reconcile the dis-
creteness of orthographic representations with the continuity of
actual speech signals. We submit that a fruitful way to deal
with this is to enable analysts to fluidly navigate between type-
level abstraction and token-level precision. Surface transcrip-
tions are informative of conventionalized linguistic resources;
at the same time, their actual realizations are much more vari-
able and gradient.

It is worthwhile to think about other solutions to the prob-
lem of characterizing structure and variation in response tokens
(and more generally, interactional tools). Wouldn’t fine-grained
phonetic transcription address some of the problems of ortho-
graphic idiosyncracies? While phonemizers can make a useful
contribution here [40, 41] , we submit that the crucial question is
not so much how to find the single perfect representation (which
does not exist) but how to navigate between types and tokens,
between generalization and precision, between social action for-
mats and the sound shapes that are their vehicles.

6. Conclusion
Response tokens are a microcosm of human action coordina-
tion. We rely on them every minute to streamline social inter-
action. The work they do becomes visible when studying con-
versation across languages. It also becomes visible, in photo
negative, when we see interactive interfaces struggle with them,
ignore them, or erase them. This means that getting at response
tokens is critical for progress in human speech technology.

The endeavour to chart structure and variation of social ac-
tion formats and their linguistic implementations across diverse
languages has just begun. We hope that the methods pioneered
here may serve as a stepping stone towards untangling human
interactional infrastructure. The results will further our scien-
tific understanding of human interaction, and can help inform
a next generation of human speech technologies, putting them
within reach of people around the globe.
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